

assembly service life

Meliad

Expertise & technologies industrielles

Group Organisation

Fatigue life enhancement *cold expansion*

Expanded Bushing installation *Metallic and composite*

Drilling composite panels *Compdrill device*

Surface preparation with Laser

Residual stresses measurement

Main customers

General presentation

- Expansion technology and multi-material drilling
- Exclusive partner for GelSight : defect control & analysis

Fatigue life enhancement – Cold expansion

Metallic holes expansion SplitSleeve – Split Mandrel

Bushing in metallic Expanded Bushing – (EB)

Bushing in Composite Expanded Bonded Bushing (EB²)

Composite drilling device

Cold expansion products

Application	Process		Metal	Composite
 Hole expansion Improved fatigue life Crack arrestor 	Split Sleeve		Х	
	Split Mandrel		Х	
Hole drillingAvoid delamination	CompDRILL		Х	Х
 Bushing installation Improved fatigue life High Push out & torque out resistance Quick installation 	Expanded Bushing (<i>EB</i>)		Х	
	Expanded Bonded Bushing (<i>EB</i> ²)			Х

1. Hole expansion

Split Sleeve Process

- Original license from a Boeing patent (1966)
- 100% interchangeable tooling with other coldworking suppliers

Slide the sleeve over the mandrel

Coldwork hole by drawing the mandrel back through the sleeve and hole.

Remove used sleeve and discard. The hole has been coldworked,

Split sleeve use

- Maintenance (SRM and SB)
 - MRO
 - Airlines
- Production
 - OEM
 - Supplier Tier-1 and Tier-2

BOM

1000005

Split mandrel process

- Process without sleeve (no consumable)
- For Aluminium only

Start pass-thru of hole. The hollow, split mandrel collapses.

Pass-thru is complete. Nosecap is placed flush to material. After depressing trigger, the pilot extends through center of hollow mandrel, which solidifies.

The hole diameter is expanded as the now solidified mandrel is pulled back through the material.

With no sleeve to discard, the hole has been coldworked.

Split mandrel use

Manual or automated use in production

2. Bushing installation

Metallic and composite applications

Expanded bushing (EB) in <u>metallic</u> part

Stainless steel bushing with anti-fretting coating

Bronze alloy bushing

Expanded Bonded bushings (EB²) in <u>composite</u> parts

Straight version

Flanged version

- Bushing inside : $4 \text{ mm} \rightarrow \sim 120 \text{ mm}$
- Bushing geometry :
 - Straight and flanged
 - Lube grooves and holes
- Bushing material: bronze, titanium, steel...
- Parent material: aluminum, steel, titanium...

EB : Expanded Bushing process

EB : Expanded Bushing process

Permanent metallic bushing in metallic parent material

1.Slip the pre-lubricated bushing over the mandrel

3. Place the puller against the structure and activate puller;

bushing remains in the structure, axial movement is blocked by the nosecap

4. Ream bushing to required final diameter (optional)

EB²: Expanded Bonded Bushing process

Permanent metallic bushing in composite parent material

EB and EB² process benefits

Capaero

Expanded bushing (EB)

• Fast and One side Operation

installation in a few seconds

Corrosion resistance

Protective coating are not damaged by nitrogen No condensation and trapped water

High Torque / Push-out resistance

Greater than conventional methods, no running bushing in service

Installation safer and quicker

No cryogenic fluid & more repeatable process

- Bushing is **bonded during manufacturing**
- Fast and one side operation Installation process is similar to expanded bushing in metallic parts

EB and EB² performance benefits

Capaero

Expanded bushing (EB)

 Improved Fatigue life (usually from x3 to x15 lifetime improvement minimum)

Fatigue life superior to press or shrink fit installation

Corrosion resistance

Protective coating are not damaged by nitrogen No condensation and trapped water

Multiple and complex bushing geometry

Expanded bonded bushing (EB²)

Higher load transfer in the assembly

Break limit is significantly improved on static tests

 Lighter assembly by assembling directly composite panels together

Metallic assembly parts can be removed

 Reduced number of fasteners for the same mechanical performance

Design & Calculation

- 2D and 3D Analysis
- Report provided to the customer
 - Stresses view
 - Path plot
 - Focus on specific area
- Iterations to reach customer needs

Tests in lab

- Tooling validation
- Geometrical deformation validation
 - Bushing internal diameter after expansion
 - Flange deformation (if applicable)
- Residual stresses measurement (optional)

Bushing manufacturing

- Fully sourced and manufactured in France
- Free from Exportation license and regulations
- CAPAERO certificate of conformity delivered under EN9100 norm

Landing gears and wheels

Use cases

- A400M Landing gear (Around 120 mm diameter) Flying
- A350 and B787 Wheels Flying
- B777 Wheel: project in progress (in production 2021 or 2022)

Engines nacelles

– A318 Thrust reverser – Flying for 15 years

Helicopters (main rotor and tail rotors)

- T625 Helicopter, Tests in progress with Browncoat
- Airbus Helicopter

Quality references

• EN 9100 certificate since 2018 under the scope :

Design and manufacture of Tooling, Bushings and fatigue life enhancement Engineering for the Aerospace Industry.

Audited and qualified by customer for flying part supply

3. Manual composite drilling

A portable feed control drill for metallic/composite material

Without CAPAERO drilling kit

Delamination and Wide tolerances

With CAPAERO drilling kit

Delivered in kit with cutting tools

- Easy to use
- Very light system
- One side access
- Economic kit
- Drill hybrid stack up material
- Better alignement
- No backup plate

4. GelSight

Available surface inspection methods are inadequate & reliant on human touch

Current surface inspection methods in aerospace manufacturing & MRO have several deficiencies:

- Qualitative, not quantitative
- Not repeatable or traceable
- Time and human capital intensive
- Contribute to over-machining and scrapping parts

There are **no available sensors** that emulate the human touch; **soft** and **highly sensitive**.

Capaero

GelSight is a soft, high-resolution tactile sensor similar to human skin

The intelligent sensor is a proprietary elastomeric platform that can be engineered to **conform to the shape** of any object on contact

Reveals detailed surface features **regardless of lighting conditions or material reflectivity**, e.g., specularity or translucency

GelSight is *digital touch.*

How it works?

The Gel Cartridge

How it works?

Based on Photometric Stereo

3D Surface Reconstruction

For each pixel, the light intensity allows to measure the normal and the tangent of the surface.

From the 6 images, the 3D surface is reconstructed in few seconds from the surface normal map using protected algorithm.

A post processing tool is available to perform basic measurements like profiles, offset, min & max, roughness

GelSight's rapid & precise surface measurements enhance aerospace quality control processes

Precise: Incredibly detailed, micron-level measurements

Versatile: can be used on any surface (metal, glass, carbon fiber) or surface (reflective, transparent)

Easy to use: ergonomic handheld on the factory floor or out in the field

Enables fast decisions: measurements in seconds

Decreased cost: reduced scrap and inventory

Repeatable & traceable: eliminates human error & enhance documentation/audit trail of data

Display on contact & easy 3D depth map generation enable fast decision-making

3

GelSight's intelligent sensor enables instant visual feedback, displaying the surface detail on contact through custom algorithms based on photo stereo imaging.

The 3D depth map is calculated using the images of the surface and the intuitive software interface, providing position, depth, and other derived surface measurements at a high resolution.

Make an immediate decision on part quality on the shop floor or out in the field. Automatic generation of control report for traceability and quality assurance purpose.

GelSight's versatility enables a diverse set of use cases

GelSight can inspect surfaces of aerostructures, cowlings, engine fan blades, fuel lines, windshields for scratches, dents, tool marks, fastener assemblies and more.

Segments

Engines & Nacelles

Aerostructures

Commercial MRO

Inspection Examples

Tool Marks

Fastener Assemblies

Landing Gear

OEM Aircraft Assembly

Military Operations

Composite Panel

Dent

Preparing for Takeoff

Tactile sensors for robotics application

- End of Arm Tooling applications
- Tactile sensors
 - Proof of concept to pick up a 6 DoF part using GelSight tactile sensors
 - Evaluation of the accuracy and the repeatability
 - Part identification and 3D reconstruction
 - Positioning the part on target

Engine fuel line damage

Civil aerospace – Airline maintenance operations

Rear rotor blade impact

Civil aerospace – Helicopter maintenance operations

Engine fuel line dent

Civil aerospace – Airline maintenance operations

Compressor blade dent

Civil aerospace – Aircraft engine manufacturing

Composite panel – lack of resin

Civil aerospace – Aircraft composite panel

Weld bead analysis

Civil aerospace – Aircraft panel welding

A technology at the leading edge of Industry 4.0

Source BCG

Contact

Capaero

6, rue des Orfèvres 44840 Les Sorinères France <u>www.capaero.com</u> Vincent Delage vdelage@capaero.com Mobile Phone: +33 6 50 29 76 57

